Introducing Infinity: DENSsolutions’ pioneering 8-contact environmental in situ solution

Introducing Infinity: DENSsolutions’ pioneering 8-contact environmental in situ solution

An interview with DENSsolutions’ Senior Mechanical Engineer about our latest innovation, Infinity – featuring an environmental holder with combined heating and biasing capabilities in both gas and liquid environments.

In this article, we delve into DENSsolutions’ cutting-edge Infinity solution through an exclusive interview with lead developer and Senior Mechanical Engineer, Christian Deen-van Rossum. Here, Christian takes us through the key features of this innovation, highlighting its benefits, diverse applications, and offering an inside look into the development journey of this advanced solution.

1) What are the main benefits of the Infinity solution for users?

“Climate Infinity and Stream Infinity bring forth numerous advantages for your in situ experiments:

1) Apply simultaneous heating and biasing stimuli: The new Climate/Stream Infinity holder features eight electrical contacts that enable simultaneous application of electrical and thermal stimuli in a gas or liquid environment. The contacts can be used for various electrically driven MEMS-based sensors and actuators, essentially transforming the Infinity system into a vast research playground. Importantly, for liquid studies, this opens the door to performing electrochemistry as a function of temperature.

2) Securely transfer your sample from one microscope to the other: The assembled tip of the Infinity holder containing a Nano-Reactor/Cell works as a cartridge, enabling complementary studies of the same sample using different TEM vendors, namely JEOL or Thermo Fisher Scientific (TFS). These microscopes can either be located in the same TEM lab, user facility or even in different universities/institutes. Remarkably, this removable tip also facilitates multi-modal characterization for SEM and beamline setups. Furthermore, the chips being used are universal, meaning that you can directly correlate experimental results obtained from JEOL and TFS microscopes, with improved Nano-Chip logistics.

3) Easily switch between STEM and TEM mode: By flipping the tip 180 degrees, you can directly change the sample position to be either on the top or bottom without a need to disassemble the tip. This grants you the freedom to flawlessly switch between STEM or TEM mode, respectively, depending on your experimental needs, while maintaining the best resolution performance. Importantly, you can switch between both imaging modes within a matter of seconds.

4) Perform gas and liquid studies with the same holder: The new environmental Infinity holder is your all-in-one solution for both gas and liquid experiments. Simply choose the appropriate function for the chips and connect the necessary gas or liquid supply system. Our extensive range of chip types includes gas-heating (GH), liquid-heating (LH), gas-heating-biasing (GHB), and liquid-heating-biasing (LHB), offering unparalleled versatility for your experimental needs. New MEMS chip designs will further expand the application space of the Infinity system.

5) Ease of use: We understand that a great product should be easy to use without a steep learning curve. Therefore, our design process focused on making sure the holder can be effortlessly utilized from the start. By prioritizing user-friendly design and continuously testing with real users, we ensured our product is not only powerful and effective but also simple and enjoyable to use. Because of this, the Infinity holder significantly reduces the time-to-experiment, allowing you to spend your time leveraging its capabilities to drive innovation and productivity. One highlight of the Infinity holder is the removal of all assembly tools and the introduction of self-aligning windows. When you place our chips in the tip of the holder, the membranes automatically align to provide a consistently clear field of view. Designed for a perfect fit, the Infinity holder ensures precise alignment without manual adjustments. This simplifies installation, reduces the risk of leaks, and allows you to focus more on your research and less on setup.

2) What inspired the development of Infinity, and what challenges did you encounter during the process?

“We wanted to bring a better, future-proof and more user-friendly holder to the market that truly meets the needs of our customers. For that reason we developed a holder from a customer-centric approach, driven by extensive customer input and thorough market research, rather than simply pushing the latest technology. We engaged with our customers to understand their challenges and desires and gathered invaluable feedback that helped shape every aspect of our product. By doing this we made sure that we were addressing real pain points and delivering solutions that would help improve the customer experience and reduce time to experiment. This customer-focused approach means that our product is not just a collection of the latest technological advancements, but a thoughtfully designed solution that reflects the actual needs and desires of our users.” 

3) What are the main application fields that will benefit from Climate Infinity and Stream Infinity?

“The Infinity system can be used for broad applications ranging from materials science to energy and life science. In materials science, the Infinity system enables the study of nucleation, growth, assembly and corrosion under well-defined chemical environments (gas, vapor and liquid) and external stimuli (heating, biasing or both). The information obtained not only provides insights into the dynamic processes of material formation but also offers guidelines for the controllable synthesis of materials with improved performance. In energy studies, the Infinity system can mimic the real working conditions of various functional devices (such as batteries, supercapacitors, fuel cells, memristors, resistive random access memory, etc.). This allows the direct monitoring of the evolution and degradation of key materials, including rechargeable battery electrodes, thermo-, electro- and thermoelectro-catalysts and phase-change materials, at the nano- or even atomic scale. For life science, it is possible to image whole cells and resolve fine structures of biomaterials and proteins in their native state, and study various dynamics of biological samples in an environment close to a real organism. Moreover, the Infinity system provides a unique platform for correlative studies across different detection sources, such as electron, X-ray, neutron and visible light.”

4) Has Infinity already been installed?

“Yes, the system has been installed at numerous sites already, including EMAT (Antwerpen, Belgium), FAU Erlangen-Nurnberg (Erlangen, Germany) and UC Irvine (Irvine, USA).”

Dr. Mingjian Wu from FAU Erlangen-Nürnberg

From left to right: Dr. Alexander Zintler from EMAT and Christian Deen van Rossum from DENSsolutions

From left to right: Dr. Hongkui Zheng and Dr. Hongyu Sun from DENssolutions, as well as Pushp Raj Prasad, Prof. Joe Patterson, Zhaoxu Li and Elmira Baghdadi from UC Irvine

Dr. Mingjian Wu from FAU Erlangen-Nürnberg

From left to right: Dr. Alexander Zintler from EMAT and Christian Deen van Rossum from DENSsolutions

From left to right: Dr. Hongkui Zheng and Dr. Hongyu Sun from DENssolutions, as well as Pushp Raj Prasad, Prof. Joe Patterson, Zhaoxu Li and Elmira Baghdadi from UC Irvine

Read more about Climate Infinity:

 

Read more about Stream Infinity:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

DENSsolutions successfully installs both a Stream and Climate system at Cardiff University

DENSsolutions successfully installs both a Stream and Climate system at Cardiff University

From left to right: Oliver Mchugh and Dr. Thomas Slater from Cardiff University, Dr. Lars van der Wal and Alex Rozene from DENSsolutions

We are excited to announce that DENSsolutions has installed both a Stream and Climate system at the renowned Cardiff University in Wales, the United Kingdom. In this article, we interview Dr. Thomas Slater, Lecturer at Cardiff University, to learn more about the Cardiff Catalysis Institute Electron Microscope Facility, the team’s research direction and the pivotal role our Stream and Climate systems will play in advancing their research initiatives.

Can you tell me about the Cardiff Catalysis Institute Electron Microscope Facility?

“The Cardiff Catalysis Institute Electron Microscope Facility (CCI-EMF) is based at Cardiff University, one of Britain’s leading research Universities. The CCI-EMF is a new, world-class electron microscopy facility located in the University’s Translational Research Hub on its Innovation Campus. It houses an array of state-of-the-art imaging and analytical instruments designed around the study of heterogeneous catalysts and nano materials. The mission of the facility is to provide researchers in academia and industry with cutting-edge microscopy equipment, creating a Welsh hub for electron microscopy expertise and skills development.

In October 2022, we installed a 200 kV Thermo Fisher Scientific Cold-FEG Spectra 200. This aberration-corrected scanning transmission electron microscope (AC-STEM) is the first of its type in Wales. It is optimised for the study and analysis of heterogeneous catalysts and nanoparticles and is fitted with the Super-X EDS detector, Panther STEM detection system for HAADF/BF and iDPC imaging, Gatan’s Continuum ER EELS and Quantum Detectors Merlin detector. The facility also hosts a JEM-2100 LaB transmission electron microscope with a high-resolution Gatan digital camera and Oxford X-max EDS detector and a Tescan MAIA-3 field emission gun scanning electron microscope (FEG-SEM), which enables secondary electron (SE), in-beam SE, low-kV backscattered electron (BSE), in-beam BSE and scanning transmission electron microscopy (STEM) imaging capabilities.”

What type of applications are the users at CCI-EMF interested in using the Stream and Climate systems for?

“The Stream In Situ TEM Liquid + Biasing or Heating system will enable us to study liquid-phase reactions and follow the mechanisms of nanoparticle synthesis in solution. Nanoparticle growth and crystallization on the surface of metal oxide supports is of particular interest to us, along with catalyst stability in solution and the mechanisms of deactivation through leaching and particle migration.

The Climate In Situ TEM Gas + Heating system will allow the CCI researchers to conduct operando STEM, TEM and chemical imaging of heterogeneous catalysts under reaction conditions. We aim to develop an improved understanding of structure-activity relationships, oxidation and reduction processes, catalysts synthesis, catalyst stability and deactivation mechanisms. Crucially, we will be able to study changes in the structure and chemistry as a function of temperature, pressure and composition, improving our understanding of catalysed processes at or near real reaction conditions.”

What particular features of the DENSsolutions systems stood out to you?

“For us it was critical to have excellent thermal stability, a uniform heated zone and fast gas mixing at the cell to ensure reproducibility and correlation with our larger scale benchtop micro- reactors. Chemical compatibility with a wide range of reaction gases and catalyst materials was also important as we support a vast number of researchers across multiple research projects with very different experimental requirements.”

Could you tell us a bit more about the funding granted to acquire the systems?

“The system was purchased with European Regional Development Funding (ERDF) through the Welsh European Funding office (WEFO) and part-funded by The Wolfson Foundation. The funding enabled the CCI to establish its own EM facility through the purchase of advanced microscopes and equipment such as the DENSsolutions Stream and Climate systems. This capability enhances and strengthens the already outstanding catalyst research facilities of the CCI and our aim is to use this new capability to support the research needs of the University, our existing partners, local industry as well as develop new research strands.”

In your experience so far, how have you found working with Stream and Climate?

“The installation went very smoothly and was completed in a couple of weeks, including the 3 days of training. The hardware is robust, and the chip assembly relatively intuitive. We are able to have chips prepared, assembled, leak-checked and in the microscope within the space of a couple of hours which leaves the rest of the days free for experiments. The parameter control is made easy through the Impulse software workflow which guides you from start to finish. In fact, we were running experiments ourselves and generating data within a week of installation.”

Dr. Tom Slater
Lecturer |  Electron Microscopy of Catalytic Materials, Cardiff University

Dr. Tom Slater received his Ph.D. in Nanoscience from the University of Manchester, where he also did postdoctoral work in the Henry Moseley X-ray Imaging Facility. He then joined the electron Physical Sciences Imaging Centre (ePSIC) as an electron microscopy scientist. He was appointed as a Lecturer in Electron Microscopy of Catalytic Materials at Cardiff University in 2022, where his research focuses on imaging of heterogeneous catalysts.

Discover Dr. Slater’s publications:

 

Learn more about Stream:

Learn more about Climate:

 

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

DENSsolutions successfully installs another Climate system in Japan, at JFCC

DENSsolutions successfully installs another Climate system in Japan, at JFCC

Top row – from left to right: Mr. Suzuki (Nano Tech Solutions), Mr. Anada (JFCC), Dr. Lars van der Wal (DENSsolutions) and Mr. Hirai (JEOL). Bottom row – from left to right: Mr. Fukunaga (JEOL), Mr. Jinbo (JEOL) and Mr. Hisada (JEOL).

We are proud to announce that DENSsolutions has installed another Climate system in Japan, at the Japan Fine Ceramics Center, located in Nagoya, a highly populated Japanese port city. In this article, we interview Dr. Satoshi Anada, Senior Researcher at the Nanostructures Research Lab in JFCC, to learn more about their microscopy facility, its research direction, as well as how our Climate system is advancing their research.

Can you tell me about Japan Fine Ceramics Center and its research and development initiatives?

Japan Fine Ceramics Center (JFCC) was established back in 1985, with the goal of improving the quality of fine ceramics mainly through integrated testing and evaluation systems. JFCC has numerous business activities, one of which is the research and development (R&D) of materials, manufacturing technology and evaluation technology. Our R&D initiatives are focused on obtaining technological solutions to problems related to the environment, energy and safety. We have two main laboratories: 1) the Materials R&D Lab and 2) the Nanostructures Research Lab. The Materials R&D Lab focuses on the development of highly functional and novel materials (mainly ceramics) by improved process control, whereas the Nanostructures Research Lab focuses on the development and enhancement of state-of-the-art electron microscopy and related technologies. At the Nanostructures Research Lab, we have a high-end electron microscope – the JEOL JEM-ARM300F2 Grand ARM. This microscope enables us to observe samples at ultra-high spatial resolution with highly sensitive analysis over a wide range of accelerating voltages.”

What type of applications are the users at the Nanostructures Research Lab interested in using the Climate G+ system for?

“Users at the Nanostructures Research Lab are interested in applying the DENSsolutions Climate system to record operando TEM observations of battery and catalyst materials. We aim to understand where and how reactions take place, and which conditions enhance the performance of those materials. Moreover, we are interested in the electrochemical oxidation of materials in reaction with oxidants such as oxygen and hydrogen.”

What particular features of the DENSsolutions Climate G+ system attracted you to the system? 

“In order to understand factors and mechanisms related to the performance of battery and catalyst materials, it is important to observe their reactions in the actual environments in which they are used. The Climate system has the ability to flexibly and rapidly adjust gas composition, temperature, flow and pressure, which enables us to observe our battery and catalyst materials under various experimental conditions. This is capability is particularly what attracted us to the solution.”

In your experience so far, how have you found working with the Climate G+ system?

“The preliminary processes including the assembly of the Climate Nano-Reactor and leak testing are quite straightforward, assisted by the well-established Climate manual and software. With the Climate system, we have been able to perform numerous experiments without running into any leakage issues. Moreover, we are particularly impressed with the stability of the system even at extremely high temperatures.”

Dr. Satoshi Anada
Senior Researcher | Japan Fine Ceramics Center

Dr. Satoshi Anada received his Ph.D. degree in Engineering, Material Science, from Osaka University. Previously, he was working as a Specially Appointed Assistant Professor in the Research Center for Ultra-High Voltage Electron Microscopy at Osaka University. Currently, Dr. Anada is working as a Senior Researcher in the Japan Fine Ceramics Center (JFCC). His research was focused on the electromagnetic analysis of functional materials and devices using transmission electron microscopy, and now particularly on different microscopic measurement informatics.

Discover Dr. Anada’s publications:

 

Learn more about Climate:

 

Discover publications made possible by Climate:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

DENSsolutions has installed yet another Climate system in the U.S. at Alfred University

DENSsolutions has installed yet another Climate system in the U.S. at Alfred University

We are proud to announce that DENSsolutions has installed another Climate system in the United States, at Alfred University, which is located in the west of New York State. In this article, we interview Dr. Kun Wang, Assistant Professor at the Inamori School of Engineering in Alfred University, to learn more about their microscopy facility, its research direction, as well as how our Climate system is advancing their research.

Can you tell me more about the microscopy facility at Alfred University?

Alfred University has numerous research facilities that boast a wide range of high-tech equipment. There are dedicated facilities for materials characterization, mechanical and physical testing, biological evaluation of materials, spectroscopy, materials synthesis and processing as well as imaging and microscopy. The Imaging and Microscopy facility is equipped with a scanning electron microscope, an atomic force microscope and a fluorescent optical microscope, among many other tools. Just last summer, we had our new transmission electron microscope installed, the TFS Talos F200X. This microscope is equipped with a super X-ray detector which enables us to perform high resolution chemical analyses in a highly efficient manner.”

What type of applications are the users at Alfred using the Climate system for?

“Users of the facility are interested in a couple of applications, now enabled via the use of our newly acquired DENSsolutions Climate system. Via Climate, we would like to perform in situ oxidation and reduction experiments on batteries and catalyst materials. Moreover, we are interested in performing in situ high-temperature oxidation experiments for aerospace materials and nuclear matter in order to better understand these materials and their behavior under varying temperature conditions. We are also interested in performing energy-dispersive X-ray spectroscopy (EDX) in those experiments to get a better idea of the elemental composition of a given sample.”

What particular features of the DENSsolutions Climate solution attracted you to the system?

“Aside from the ability of the system to combine gas and heating functions, it was particularly important for me to use an in situ system that could handle high temperatures. Specifically, I was looking for a system that could handle high temperatures while still maintaining the stability of the holder. This is particularly what attracted me most to the Climate system.”

Can you tell me about the grant that was won to acquire the system?

“The grant was actually awarded several years ago, from an institute called the New York State’s Empire State Development, which provides numerous services and resources for education, healthcare, military and other fields.”

DENSsolutions Prof. Jungwon Park

Dr. Kun Wang
Assistant Proffessor | Inamori School of Engineering, Alfred University

Dr. Kun Wang received his Ph.D. degree in Materials Science and Engineering from the Swiss Federal Institute of Technology Lausanne (EPFL). He used to work as a Postdoctoral Research Associate at the Nuclear Materials Science and Technology group of the Oak Ridge National Laboratory (ORNL). Currently, he is working as an Assistant Professor at the Inamori School of Engineering, Alfred University. His research focuses on study of structural materials under extreme environmental conditions.

Discover Dr. Kun Wang’s publications:

 

Learn more about Climate:

 

Discover publications made possible by Climate:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

A comprehensive guide for data synchronization in operando gas and heating TEM

A comprehensive guide for data synchronization in operando gas and heating TEM

A team of experts develop a data synchronization method for operando gas and heating TEM via time delay calibration, enabled by the unique ability of the DENSsolutions Climate Nano-Reactor to perform nano-calorimetry.

Original article by Fan Zhang, Merijn Pen, Ronald G. Spruit, Hugo Perez Garza, Wei Liu, Dan Zhou

In recent years, operando gas and heating transmission electron microscopy (TEM) has become recognized as a powerful tool for creating time-resolved correlations between the environment, reaction products, energy transfer and material structures during reaction processes. Via operando gas and heating TEM, a detailed understanding of the relationship between the structural evolution of a catalyst and its performance can be achieved. Despite its many benefits, one inevitable issue with the technique is the intrinsic time delays that occur between different parameter measurement locations. These time delays must be calibrated in order for researchers to draw valid correlations and conclusions. Correlations without time delay calibration could lead to, for example, over/under-estimating critical temperatures and generating misleading relationships between catalytic structure and activity.

In recent research performed at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, where our advanced Climate G+ system is installed, Fan Zhang, Dr. Wei Liu and our own team of experts, including Merijn Pen, Ronald G. Spruit, Dr. Hugo Perez Garza and Dr. Dan Zhou, developed a data synchronization method to account for time delays in operando gas and heating TEM. Specifically, they systematically explored the relationship between delayed time and reaction conditions such as gas pressure, flow rate and gas composition. Based on the results, they developed open source scripts that can be used to achieve reliable and automated data synchronization via time delay characterization and calibration. The authors also developed a general protocol to perform automatic time delay calibration for all kinds of TEM setups.

The experimental setup

The experimental setup used in the study included the DENSsolutions Climate Gas Supply System (GSS), Climate in situ TEM holder, Climate Nano-Reactor, Gas Analyzer and Thermo Fisher Scientific Themis ETEM. In Figure 1a) below, a schematic view of the operando gas and heating TEM setup is presented. Generally, a gas will first travel from the GSS into the TEM, and then from the TEM into the Mass Spectrometer (MS), also known as the Gas Analyzer. This process is depicted in Movie 1 below. The different colors in the video visualize what happens when the gas composition is changed, where a new color represents a new gas mixture. In this visual depiction, it is shown that the gas composition measurement at the GSS is actually ahead in time of the measurements at the TEM. This is because the gas takes time to reach the sample. Moreover, the measurements from the MS are also delayed because the gas needs time to flow from the TEM to the MS. A more detailed account of the gas path and the components involved is provided below.

The GSS contains three gas bottles as well as three flow controllers that measure and regulate the gasses’ flow rates. The gasses are mixed using a unique on-the-fly mixing technique, where a user can change the gas composition dynamically as well as alter the gas environment within a matter of seconds. The mixed gas is then guided into the Nano-Reactor in the TEM through the holder, and then to the MS, which derives the outlet gas composition by measuring the partial pressures of reactants and products. Expectedly, as the gas travels through this path, considerable time delays occur. In fact, the researchers found that a user-set gas composition change in the GSS will only show changes in the MS after 79.1 seconds (see Figure 1b) below). 

Movie 1: Movie depicting the gas path and time delays associated with operando gas and heating TEM.

Figure 1: (a) A schematic view of a gas cell based operando TEM gas path; (b) Illustration of time delay between GSS and MS. Here GSS data are measured by flow meter and MS by measuring the ionized gasses’ mass to charge ratio.

In Figure 2 below, a diagram of the operando gas and heating TEM setup used in this work is presented. The setup can be grouped in two ways: from a hardware perspective and from a gas path/TEM investigation perspective. In the case of the former grouping, the setup can be divided into GSS, TEM and MS. In the case of the latter grouping, the setup can be divided into pre-TEM, in-TEM and post-TEM. The researchers were able to synchronize the data from pre-, in- and post-TEM by first measuring and then calibrating the time delays involved. 

Figure 2: A diagram of the operando gas and heating TEM setup.

Calorimetry-based time delay calibration

The DENSsolutions Climate system offers users the unique ability to perform nano-calorimetry, which comes in as a convenient feature in the calibration of time delays. Specifically, when a new gas type enters the Nano-Reactor, this is detected by the microheater because it is very sensitive to even the most minute changes in heat. Users can monitor the gas changing process due to the difference in the thermal properties of the different gasses flown through the Nano-Reactor, enabling the detection of what time the new gas has reached the sample. The unique on-chip calorimetry feature of our Nano-Reactor allows for calibration of the time delays, and therefore enables perfect synchronization between gas compositional changes, TEM imaging and spectroscopy data.

Relationship between time delay and various parameters

The next step for the researchers was to systematically explore the relationship between the delayed time and reaction conditions such as gas pressure, flow rate and gas composition. They found that the delayed time between different parts, in either of the two grouping mechanisms, is determined by the gas pressure and flow rate in the Nano-Reactor, as well as the total gas path length. They also found that the time delay has little dependence on the gas type. The investigation of the relationship between the time delay and the above-mentioned critical parameters allowed the researchers to develop a functional relationship. Using the established functional relationship, they were able to lay the foundation for manually and automatically calibrating the time delays.

Automation of data synchronization

Based on the investigations, the authors developed algorithms and scripts to enable the automatic data synchronization in operando gas and heating TEM. Specifically, two open source Python scripts have been written for characterizing and calibrating the time delays in experiments. 

The first script characterizes the time delay curve, utilizing DENSsolutions Impulse API and ImpulsePy library to control and retrieve the measurements from the GSS, the heating control unit and the MS. It does this by alternating between different gas mixtures and measuring the time delays until these gas composition changes are detected in the calorimetry data of the microheater and in the partial pressure data from the Mass Spectrometer. It performs multiple gas composition switches at different flow-rates and pressures to collect enough data points to be able to fit the two characterization curves through them. These curves are the pre-TEM to in-TEM delay and the in-TEM to post-TEM delay characterization curves of that specific system. The characterization only needs to be performed once, after which the calibration file can be used repeatedly on any dataset measured by the same system.

The second script removes the time delays from a dataset by first splitting the system parameters into different sets: pre-TEM, in-TEM and post-TEM. Because the pressure and flow parameters can change over the duration of the experiment, the time delay correction amount is calculated and applied for every measurement in the dataset individually. The script then saves three corrected datasets (pre-TEM, in-TEM and post-TEM) individually with their own time resolution, and creates a synchronized log file in which the pre-TEM and post-TEM parameters are interpolated towards the in-TEM dataset timestamps. In Figure 3 below, an example of the synchronized data output from the time delay calibration script is presented. The data is then synchronized with the TEM imaging and spectroscopy data to achieve the complete operando gas and heating TEM data synchronization.

Figure 3: The synchronized data corrected by the time delay correction scripts.

General operation protocol

With the above conclusions and scripts, the authors have created a step-by-step guide for performing automatic time delay calibration for your own operando TEM setup. This protocol is summarized in Figure 4 below.

Figure 4: Schematic view of the operation protocol.

Conclusion

Time delay is an issue inherent to every gas supply system used in an operando gas and heating TEM setup. In a collaborative effort between DICP and DENSsolutions, the researchers have developed a data synchronization method to effectively address this problem. Specifically, by developing a functional relationship between delayed time and reaction conditions like gas pressure, flow rate and gas composition, the authors were able to develop open source scripts that characterize and calibrate the time delay automatically. On top of this, a conductive protocol is described such that any researcher can apply the data synchronization method to their own unique operando gas and heating experimental setup. Overall, this work is a major step forward in ensuring that researchers conducting operando gas and heating experiments are able to make valid correlations between critical parameters and provide the right conclusions and insights.

“The DENSsolutions Climate system is able to create an accurate working environment of what practical catalysts go through. Not only does the system facilitate the real-time observation of dynamic catalytic behavior, but it also enables the simultaneous monitoring of the performance of a catalyst by detecting the resulting products within the Nano-Reactor. By enabling this elaborate strategy of data synchronization in operando gas and heating TEM, Climate initiates the distinct functionality of correlating catalytic property with microstructural changes, which adds core value to what the technique of in situ TEM can reveal about a dynamic reaction.”

Prof. Dr. Wei Liu
Professor  |  Dalian Institute of Chemical Physics, CAS

Original article:

Discover our Climate solution:

Discover more publications made possible by Climate:

Thomas article feature image

Scientists explore complex metal-support interactions under redox conditions using our Climate system

Via the DENSsolutions Climate system, a team of scientists uncover the dynamic interplay between platinum nanoparticles and titania support under reaction conditions.

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

Scientists explore complex metal-support interactions under redox conditions using our Climate system

Scientists explore complex metal-support interactions under redox conditions using our Climate system

Via the DENSsolutions Climate system, a team of scientists uncover the dynamic interplay between platinum nanoparticles and titania support under reaction conditions.

Original article by H. Frey, A. Beck, X. Huang, J.A. van Bokhoven and M. G. Willinger

For catalysts consisting of metal nanoparticles and an oxide support, understanding the synergistic reactions between the metal and support is paramount. In the case of reducible supports, the so-called strong metal-support interaction (SMSI) provides a means of tuning the chemisorption and catalytic properties of supported metal particles. SMSI involves the encapsulation of nanoparticles by a thin layer of partially reduced support material. The encapsulation is typically induced during high-temperature reductive “activation”, i.e., treatment in hydrogen. Notably, the direct imaging of this encapsulated state has mostly been achieved ex situ. Little is known about SMSI under catalytic working conditions, where the application of in situ electron microscopy is invaluable. While environmental transmission electron microscopy (TEM) is generally limited to chamber pressures of around 20 mbar, the DENSsolutions Climate Nano-Reactor can handle pressures 100 times higher, unlocking unprecedented research possibilities for the study of catalysts in their native environment.

In recent research performed at ScopeM, ETH Zurich, where our advanced Climate G+ system is installed, Hannes Frey, Arik Beck, Dr. Xing Huang, Prof. Dr. Jeroen Anton van Bokhoven and Prof. Dr. Marc Georg Willinger investigated the dynamic interplay between metal nanoparticles and oxide support under reaction conditions. More specifically, the scientists revealed the working state of a model catalyst, Pt–TiO, by directly observing the synergistic interactions related to SMSI between the platinum nanoparticles and titania support.

Switching to a redox-active H₂–O₂ mixture

Frey and his fellow collaborators first induced the classical SMSI state by heating the titania-supported platinum nanoparticles (NPs) in H₂. The nanoparticles were then transferred into an O₂ atmosphere via inert gas purging. Interestingly, this treatment resulted in the platinum NPs incurring a nonclassical oxidized SMSI state. After preparing the system, the researchers then exposed it to a redox active atmosphere through the addition of H₂ into the O₂ flow. With the Climate G+ system, the researchers were able to mix the gasses on the fly, while continuing with the high-resolution observation. 

In Figure 1 and Movie 1 below, the morphological change of the platinum NPs upon transition into the redox-active regime is presented. Increasing the partial pressure of H₂ in the Climate Nano-Reactor resulted in the gradual change in the encapsulated state of the Pt NPs. Moreover, this resulted in the ultimate disappearance of the overlayer as soon as the gas composition reached a set mixture of 60 mbar H₂ and 700 mbar O₂ after ~180 s. Once the overlayer was fully removed, the particle was observed to experience particle dynamics like restructuring and migration (shown in Figure 1E and 1F). 

Figure 1: Image series depicting the morphological changes observed when a titania-supported platinum nanoparticle in a nonclassical SMSI state is exposed to a redox-active atmosphere. The composition of the gas in the Nano-Reactor was gradually changed from 700 mbar O₂ to a mixture of 60 mbar H₂ plus 700 mbar O₂. t0 is the time at which the H₂ flow was turned on.

Movie 1: TEM Movie depicting the morphological changes observed when a titania-supported platinum nanoparticle in a nonclassical SMSI state is exposed to a redox-active atmosphere.

Particle and interfacial dynamics in the redox-active regime

The researchers then set out to explore the response of a collection of nanoparticles to reaction conditions. They discovered that the degree of structural dynamics and mobility differed greatly among the nanoparticles. Whereas some NPs remained static and stationary, others incurred structural fluctuations and migrated across the substrate surface. The researchers decided to follow three representative cases of nanoparticles with different orientations. In all cases, it is observed that the redox chemistry at the interface is the driving force for particle reconstruction and migration. In Figure 2 below, the respective structural dynamics of the three selected nanoparticles are presented.

Figure 2: (A–C) Pt NP oriented with (111) planes perpendicular to the interface. (G to J) Pt NP oriented with (111) planes parallel to the interface. (K to N) Pt NP that has its (111) planes inclined toward the interface. The blue shapes indicate the respective positions of the Pt NP in the previous frames.

Case 1

The first platinum NP that was considered was oriented with (111) planes perpendicular to the interface. In Movie 2 below, the recorded time series of this platinum NP at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂ is shown. Here, the NP developed pronounced structural dynamics that involved twin formation and shearing along (111) planes in an up-down motion, perpendicular to the interface. 

Movie 2: Recorded time series of the Pt NP presented in Figure 2A–C) at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂.

Case 2

The second Pt NP that was considered was oriented with (111) planes parallel to the interface. Movie 3 below shows the image series acquired for this nanoparticle, at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂. Here, a continuous step flow motion of the (111)-type facet in contact with the interface is observed.

Movie 3: Image series of the Pt NP presented in Figure 2G–J) at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂.

Case 3

The third platinum NP that was considered was oriented with (111) planes inclined towards the interface. Movie 4 below shows the image series acquired for this nanoparticle, at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂. In this case, the nanoparticle is observed to engage in redox chemistry-driven directional surface migration which is caused by restructuring at the interface.

Movie 4: Image series of the Pt NP presented in Figure 2K–N) at 600°C in an atmosphere containing 700 mbar O₂ plus 60 mbar H₂.

Retraction of H₂ and reformation of the oxidic SMSI overlayer

The next step for Frey and his fellow researchers was to switch the gas composition from a reactive feed back to a purely oxidizing environment by turning off the H₂ flow. This change in the gas composition resulted in the encapsulated state of the platinum NPs to be reestablished. In Figure 3 below, the morphological change of a Pt NP upon switching the gas from a redox-active environment to a purely oxidizing environment is presented. This switching of the gas composition led to the reformation of a classical particle overgrowth. It is seen that the nanoparticles first adopted a spherical morphology (Figure 3A–C). Then, as soon as H₂ was fully removed from the Nano-Reactor, the support material migrated onto the Pt NPs and the overlayer reformed (Figure 3D–F).

Figure 3: Image series depicting the morphological changes of a Pt NP observed when switching from a redox-active to purely oxidizing environment at 600°C. t0 is the time at which the H₂ flow was set to zero.

Conclusion

The aim of this paper was to reveal the working state of a catalyst via direct observation and to study possible synergistic interactions related to SMSI between metal nanoparticles and a reducible oxide support. The use of our Climate system enabled the researchers to capture in exceptional detail the dynamic and complex metal-support interactions of Pt–TiO₂ under reactive catalytic conditions. This is especially thanks to the advanced capacity of the system to handle pressures of up to 2 bar. 

A key finding of this paper is that the stable configurations of static Pt particles exhibiting encapsulation were observed to exist either in pure H₂ (the classical SMSI state) or in pure O₂ (the nonclassical SMSI state), but not in an environment where both gases were simultaneously present. Indeed, the exposure to the redox-active environment led to the removal of the overlayer and the subsequent emergence of pronounced particle dynamics. Moreover, the in situ observations show that the particle restructuring and migration behavior is dependent on the relative orientation of the particle on the support, and therefore the configuration of the interface. Overall, these findings advance our comprehension of SMSI-induced encapsulation of metal nanoparticles, which can in turn help us better tune the chemisorption and catalytic properties of catalysts. 

Hanglong Wu portrait

“The DENSsolutions Climate System allows us to reveal the so-far unseen: Looking at not only how the gas-phase is changed in the presence of a catalyst, but also studying how the interaction between gas-phase and catalyst leads to the emergence of catalytic function. Direct real-space observation is essential for our understanding of working catalysts and the development of new processes that are urgently needed in view of climate change and limited natural resources.”

Prof. Dr. Marc-Georg Willinger
Professor  |  Technical University of Munich

Original article:

Discover our Climate solution:

Discover more publications made possible by Climate:

Thomas article feature image

Climate helps uncover phase coexistence and structural dynamics of redox metal catalysts

Using our Climate system, scientists are able to interrelate the atomic-scale structural dynamics of redox metal catalysts to their activity.

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

242