DENSsolutions has installed yet another Climate system in the U.S. at Alfred University

DENSsolutions has installed yet another Climate system in the U.S. at Alfred University

We are proud to announce that DENSsolutions has installed another Climate system in the United States, at Alfred University, which is located in the west of New York State. In this article, we interview Dr. Kun Wang, Assistant Professor at the Inamori School of Engineering in Alfred University, to learn more about their microscopy facility, its research direction, as well as how our Climate system is advancing their research.

Can you tell me more about the microscopy facility at Alfred University?

Alfred University has numerous research facilities that boast a wide range of high-tech equipment. There are dedicated facilities for materials characterization, mechanical and physical testing, biological evaluation of materials, spectroscopy, materials synthesis and processing as well as imaging and microscopy. The Imaging and Microscopy facility is equipped with a scanning electron microscope, an atomic force microscope and a fluorescent optical microscope, among many other tools. Just last summer, we had our new transmission electron microscope installed, the TFS Talos F200X. This microscope is equipped with a super X-ray detector which enables us to perform high resolution chemical analyses in a highly efficient manner.”

What type of applications are the users at Alfred using the Climate system for?

“Users of the facility are interested in a couple of applications, now enabled via the use of our newly acquired DENSsolutions Climate system. Via Climate, we would like to perform in situ oxidation and reduction experiments on batteries and catalyst materials. Moreover, we are interested in performing in situ high-temperature oxidation experiments for aerospace materials and nuclear matter in order to better understand these materials and their behavior under varying temperature conditions. We are also interested in performing energy-dispersive X-ray spectroscopy (EDX) in those experiments to get a better idea of the elemental composition of a given sample.”

What particular features of the DENSsolutions Climate solution attracted you to the system?

“Aside from the ability of the system to combine gas and heating functions, it was particularly important for me to use an in situ system that could handle high temperatures. Specifically, I was looking for a system that could handle high temperatures while still maintaining the stability of the holder. This is particularly what attracted me most to the Climate system.”

Can you tell me about the grant that was won to acquire the system?

“The grant was actually awarded several years ago, from an institute called the New York State’s Empire State Development, which provides numerous services and resources for education, healthcare, military and other fields.”

DENSsolutions Prof. Jungwon Park

Dr. Kun Wang
Assistant Proffessor | Inamori School of Engineering, Alfred University

Dr. Kun Wang received his Ph.D. degree in Materials Science and Engineering from the Swiss Federal Institute of Technology Lausanne (EPFL). He used to work as a Postdoctoral Research Associate at the Nuclear Materials Science and Technology group of the Oak Ridge National Laboratory (ORNL). Currently, he is working as an Assistant Professor at the Inamori School of Engineering, Alfred University. His research focuses on study of structural materials under extreme environmental conditions.

Discover Dr. Kun Wang’s publications:

 

Learn more about Climate:

 

Discover publications made possible by Climate:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

Introducing the Stream Liquid Supply System: An integrated solution offering unmatched flexibility

Introducing the Stream Liquid Supply System: An integrated solution offering unmatched flexibility

An interview with DENSsolutions Mechanical Engineer Alejandro Rozene about our latest addition to the Stream product line: the Liquid Supply System (LSS).

DENSsolutions introduces its latest solution: the Stream Liquid Supply System (LSS): an integrated solution designed to offer you ease-of-use, flexibility and reproducibility in your in situ liquid experiments. In this article, we interview our Mechanical Engineer Alejandro Rozene to learn all about the LSS, from what inspired its development, its unique capabilities and the many applications that will benefit from its creation.

What led to the development of the Stream Liquid Supply System?

“Our Liquid Phase Electron Microscopy (LPEM) solutions have been used by researchers around the world in a plethora of research fields, such as protein studies, battery research and molecular self-assembly. With our Stream system, users can fully control the microfluidic environment inside the Nano-Cell, our environmental MEMS sample carrier, while biasing or heating their sample. Considering the wide range of capabilities the system offers and the complexity of LPEM, Stream is quite the advanced system. This is precisely what inspired the next step in the innovation process: the development of an integrated solution designed to offer greater flexibility and ease-of-use. The Liquid Supply System (LSS) is a single scientific instrument that allows microscopists to carry out imaging experiments in fewer steps while introducing new features. The LSS is also designed to be the basic unit of a modular system that can be configured for different research applications.” 

What are the main benefits of the LSS for users?

“The introduction of the LSS to the Stream product line brings forth numerous advantages for your in situ liquid experiments, including greater flexibility, reliability and reproducibility. These benefits are detailed below:

1) Ease of use: Thanks to the clever architecture of the LSS, particularly the moveable base, you can easily relocate, store and set it up in various locations. It is also possible to control the microfluidic environment of the Nano-Cell and to apply different stimuli using a single interface in Impulse, our in situ experiment control and automation software. All of the sensor data is collected centrally. The LSS therefore simplifies the LPEM workflow and allows you to shift the focus from the hardware to the imaging experiment. This will potentially open the door to more elaborate experimental workflows.

2) High resolution imaging and meaningful analytical analysis: It is widely known that LPEM suffers from limited resolution caused by the thickness of the liquid layer inside the sample chamber. Even a 500 nm liquid layer can limit imaging resolution. With the LSS, the capability of controllable and inert gas purging is introduced. This means that you can easily displace the liquid in the Nano-Cell and effortlessly cycle between dry and liquid environments. This can be done with air or with an inert gas for air-sensitive samples. Via purging, you can easily get rid of excess liquid in the sample, thereby allowing you to achieve high resolution imaging, image in electron diffraction mode and perform spectroscopy techniques: EDS and EELS.

3) Reliable and reproducible results: The components of the LSS, such as the inlet and outlet pressure-based pumps as well as the liquid flow meter, introduce an unprecedented level of control during your liquid phase microscopy experiments. The LSS offers the unique ability to actively measure the liquid flow, making it possible for you to compare results from different experiments. Moreover, this means that you can easily detect potential clogs in the system and act fast, allowing you to spend your TEM time efficiently and effectively. Ultimately, the combination of our LSS and unique Nano-Cell design, having an on-chip inlet and outlet, enables the liquid delivery to be both reliable and reproducible with a success rate of more than 95%.”

Which applications will benefit most from the LSS?

“The LSS is beneficial for any researcher who wants to use LPEM to observe hydrated samples, matter suspended in liquid or liquid itself in a dynamic environment. Some of the many fields that will benefit from the system include:

  1. Life Science: DNA imaging, biomineralization, cell imaging and protein studies
  2. Electrochemistry: studies of aqueous electrolytes and electrocatalysis
  3. Material Science: studies of nanoparticle formation, self-assembly and growth

These are just a few examples of the several fields that can benefit from the Stream system. Furthermore, the door is open to any researcher who may want to exploit the unique capabilities of the LSS for any liquid-based study outside of the TEM.”

What kind of challenges were tackled during development?

“The LSS is a state-of-the-art scientific instrument. As with any other mechatronic development, integrating the sensing, actuating and microfluidic components into a single, robust machine was in itself a challenge. Also, our market is especially demanding since the users of this instrument already work with some of the most advanced equipment out there, which undoubtedly sets the bar very high. However, it was a very enjoyable experience thanks to the incredible teamwork and collaboration of our MEMS Project Manager, Tijn van Omme, and our Software Developer, Emil Svensson, as well as our manufacturing partners.”

What is the compatibility of the LSS?

“The LSS is an integral part of our Stream product line. It is therefore fully compatible with the modular Stream sample holder, the Stream liquid biasing and liquid heating Nano-Cells, as well as with Impulse. With regards to the microscopes, compatibility is given by the holder type. We currently offer compatibility with JEOL and Thermo Fisher Scientific microscopes.”

Has the LSS already been installed?

“Yes, the Liquid Supply System has been installed at the University of Alberta Nanofabrication and Characterization Facility (nanoFAB) in Canada. The nanoFAB is a national, open-access training, service, and collaboration centre, focused on academic and industrial applications in micro- and nanoscale fabrication and characterization. The installation was carried out by our MEMS Project Manager, Tijn van Omme, with the support of our close distributor Colt Murray from Nanoscience Instruments. It is the first of several installations planned in the upcoming months.”

From left to right: XueHai Tan, Colt Murray, Tijn van Omme and Haoyang Yu

Read more about the LSS:

 

Receive a quotation for Stream:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

Meet our new colleagues Dr. Vasilis Papadimitriou and Erkin Demir

Meet our new colleagues Dr. Vasilis Papadimitriou and Erkin Demir

We are excited to announce the expansion of our team with two new wonderful colleagues: our MEMS Development Manager, Vasilis, as well as our Lab Manager and Quality Control Engineer, Erkin.

DENSsolutions Eva Bladt

A prime focus of DENSsolutions is the innovation and further development of our in situ microscopy solutions, including those catered to the life science community. With this goal in mind, we wanted to expand our team with someone who could lead the development of our MEMS technology for liquid phase transmission electron microscopy. Over the past 15 years, Vasilis has acquired a unique and diverse pool of knowledge within numerous fields, including micro-/nanotechnology, Lab-on-a-Chip devices and life science applications such as point-of-care diagnostics and wearable optical biosensors. His role at DENSsolutions is focused on the development of new MEMS devices which will enable advanced in situ microscopy solutions for the scientific community.

Aside from innovation, DENSsolutions recognizes the need to deliver top-quality products that not only meet but exceed customer expectations. This is precisely the value that Erkin will bring forth in light of his five-year experience in quality control at the leading automotive and aerospace companies in Turkey. Erkin will be responsible for the internal and supplier-side quality control activities at DENSsolutions, as well as the implementation of valuable quality control tools to DENSsolutions processes. We asked Vasilis and Erkin to introduce themselves so you can learn more about their education, experience and role at DENSsolutions. 

Meet Dr. Vasilis Papadimitriou

“My name is Vasilis Papadimitriou and I am 33 years old. I was born and raised in a small town called Levadia in Greece, and in 2013 I moved to the Netherlands.

In 2006, I started my Bachelor in Electronics and Computer Engineering at the Technical University of Crete in Greece. After that, I pursued a Master’s degree in the same field where I focused on programming, electronics and telecommunications. For my MSc thesis, I investigated the use of DNA for complex mathematical algorithms (DNA computing). After my military service, I moved to the Netherlands in 2013 and dived into the world of micro-/nanotechnology as part of my MSc in Electrical Engineering at the University of Twente. During this MSc thesis, I created a novel carbon electrode for use in supercapacitors, which granted me deep insights into electrochemistry and fluid mechanics. 

After that, I decided to continue my studies with a PhD in University of Twente. The focus of my doctorate was on Lab-on-a-Chip devices. I’ve always enjoyed multidisciplinary science, and Lab-on-a-Chip devices integrate numerous fields such as microtechnology, physics, chemistry, biology and electrical engineering. The European project that my PhD was part of focused on the development of a point-of-care device for early diagnosis of cardiovascular diseases. My role was to separate and concentrate specific proteins from a droplet of blood. In 2019, I received my doctorate degree and since then, I have had two postdoctoral positions: one on artificial intelligence for Lab-on-a-Chip applications at the University of Twente, and another on wearable optical biosensors at the Technical University of Delft.

That brings us to today, where I am really happy to be part of the DENSsolutions team. Actually, I wasn’t previously familiar with in situ microscopy nor the company, which is really unfortunate since their (and now our!) products could have solved many of the challenges I faced during my PhD and postdoctoral work. My main role at DENSsolutions is to investigate new technologies and develop intelligent MEMS devices that will make electron microscopy easier, faster and reproducible. With more than 15 years of experience within academia, I am very much well-acquainted with the struggles of research. I hope through DENSsolutions I will make the lives of scientists easier, while at the same time expanding my engineering and scientific horizons.”

Meet Erkin Demir

“My name is Erkin Demir. I am a 28-year-old individual of Circassian origin who was born and raised in Turkey. As of February 2022, I moved to the Netherlands for my exciting new role at DENSsolutions.

I started my Bachelor in Gazi University in the field of metallurgical and materials engineering. For my Bachelor’s thesis, I did research on the current and potential uses of graphene. After my undergraduate degree, I started working as a Quality Engineer in Bozankaya, a top manufacturer for public transportation vehicles in Turkey. There, I had the opportunity of managing the supplier deployment and incoming quality control processes of the first domestic 100% electric buses and trams. This job granted me my first exposure into the intricacies and importance of quality control for the delivery of top-quality products. As a next step in my career, I became a Quality Engineer at Erkunt Tractor Ind. Inc., an renowned tractor manufacturer in Turkey. This position helped me obtain deeper insights into field of quality control as a whole, as I was involved in areas such as mass production, lean manufacturing, supplier development, 5S and similar processes.

Afterwards, I landed a job as a Lead Quality Engineer at the Tusaş Engine Industry Inc., the leading aviation engine manufacturer in Turkey. During my work there, I was fully responsible for the quality side of the NPI processes of some parts in aircraft engine programs. I worked on the implementation of advanced measurement methods to ensure the high precision and safety conditions associated with the aviation industry. I obtained a lean 6 Sigma yellow belt and AS 13001 DPRV certification after completing related courses and exams. Thanks to this SAE authorization, I became eligible to sell aero engine parts on an international level. In parallel with this position, I completed my Master’s degree in Metallurgical and Materials Engineering at Gazi University in 2020. For my Master’s thesis, I examined the performance of high temperature diffusion coatings on the corrosion resistance of nickel-based superalloys used in high pressure turbine blades.

Here I am now, a different country, a different industry, and some awesome teammates. I couldn’t be more excited and curious to embark on this new journey. My main role at DENSsolutions is to ensure the proper functioning of all our products so that our customers can conduct their research without disturbance. This includes performing meticulous inspections and tests at our lab on our world-class MEMS devices, TEM holders and fluid handling systems. Moreover, I will be working very closely with suppliers to ensure the highest possible quality level for our products. I am excited to be deploying all the best practices I have learned over the years into DENSsolutions, adding value step by step.”

Get in touch with

Vasilis

Erkin

Vasilis

Erkin

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

DENSsolutions has installed yet another Stream system in Germany at Forschungszentrum Jülich

DENSsolutions has installed yet another Stream system in Germany at Forschungszentrum Jülich

DENSsolutions Installing South Korea's second Stream system at Seoul National University

From left to right: Andreas Körner and Dr. Andreas Hutzler

We are proud to announce that DENSsolutions has installed yet another Stream system in Germany at the esteemed Forschungszentrum Jülich, one of the largest interdisciplinary research centres in Europe. In this article, we interview Dr. Andreas Hutzler, the new head of the TEM lab in the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) at Forschungszentrum Jülich, to learn more about their advanced microscopy facility, its research direction, as well as how our Stream system is advancing their research.

Can you tell me more about the microscopy facility at HI ERN?

“The Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) is part of the Forschungszentrum Jülich. It specializes in providing crucial research on technologies needed to utilize renewable energies in the decades to come. Our research is centered around fuel cells, electrolyzers and hydrogen storage. The institute was founded in 2013 and has been growing ever since. In 2021, its new research building was inaugurated, hosting the space for a new transmission electron microscope, the Talos F200i from Thermo Fisher Scientific. This tool provides in-house structural analysis on the nanoscale for catalysts, support systems and membranes.”

What type of applications are the users at HI ERN using the Stream system for?

“Our goal is to study electrochemical processes taking place on electrode and catalyst surfaces within electrolyzers and fuel cells down to the atomic scale. We aim to understand which reactions take place, and which conditions enhance the performance of the cells or disintegrate the structures involved.

In order to understand this, we consider beam-induced effects onto the solution chemistry we investigate. For this, we utilize a comprehensive radiolysis model for unraveling the influence of electron irradiation onto the sample and compare the results to non-biased experimental observations. Once this is understood, we continue with analyzing dynamic processes at the nanoscale to gain insights into reaction pathways and degradation mechanisms in P2X and X2P applications.”

What particular features of the DENSsolutions Stream solution attracted you to the system?

“In order to understand observable processes and their correlated chemistry, it is necessary to accurately tune experimental conditions while operating the system. The ability of the Stream system to flexibly adjust pressure, flux, temperature and potential allows to run a manifold of experiments in a wide parameter space. This is needed in order to verify the stability of our reaction kinetic models and for testing electrolysis at borderline conditions. Before, the structures could only be studied after the reaction has taken place. But the ability to directly observe dynamic processes on-site in real time gives valuable insights in the chemistry at hand.”

Can you tell me about the grant that was won to acquire the system?

“One of our key research interests is the development of new methods for characterizing fundamental and applied processes in electrocatalysis relevant to electrochemical energy conversion. After establishing identical-location TEM (IL-TEM) for energy applications and with the start of my team, a new transmission electron microscope as well as equipment needed for in situ liquid-phase TEM was funded by and installed at HI ERN. This particular toolbox will be a great asset for the nanoanalysis of electrochemical processes in my team which will enable unique insights in energy research.”

In your experience so far, how have you found the Stream system?

“The modular architecture of the Stream system enables a very versatile applicability without risking leakage or cross-contaminations. The performance of LP-TEM is considerably enhanced due to the controllability of liquid flow, the ever-present window bulging via the utilization of a novel chip design as well as a differential pumping system as a standard. Moreover, DENSsolutions came forward with providing non-standard solutions in order to provide compatibility with other setups at our institute.”

DENSsolutions Prof. Jungwon Park
Dr. Andreas Hutzler
Head of the Transmission Electron Microscopy lab| HI ERN, Forschungszentrum Jülich

Dr. Andreas Hutzler is the new head of the Transmission Electron Microscopy lab at HI ERN, PI of multiple projects at HI ERN and university and is currently setting up a team for nanoanalysis of electrochemical processes. His research interests mainly focus on methodological aspects of LP-TEM and its application in electrochemical energy conversion.

Discover Dr. Andreas Hutzler’s publications:

Learn more about Stream:

Discover publications made possible by Stream:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

Announcing DENSsolutions’ new CEO: Dr. Hugo Pérez-Garza

Announcing DENSsolutions’ new CEO: Dr. Hugo Pérez-Garza

An interview with Dr. Hugo Pérez-Garza, the newly appointed CEO of DENSsolutions.

We are excited to announce the appointment of DENSsolutions’ new CEO: Dr. Hugo Pérez-Garza, a longstanding pillar within this company. Dr. Hugo Pérez-Garza is a highly experienced and well-regarded leader with a strong feel for both science and business. During the last 3 years, Hugo has passionately and successfully led the technological roadmap and strategic positioning of DENSsolutions as Chief Technology Officer. With his unique skillset, extensive experience and diverse knowledge, Hugo certainly has the blueprint to propel the success of DENSsolutions to unprecedented heights.

In this article, we interview Hugo to learn everything from how this appointment came to be, the changes he would like to implement as the new CEO, to the exciting vision he has for DENSsolutions.

Can you tell us a little bit about how your appointment of CEO came to be?

“After many years of hard work, full of achievements thanks to his never-ending commitment to deliver results and his capability for entrepreneurial vision, our former CEO, Mr. Ben Bormans, reached his age of retirement. I´ve been very lucky in my career to have learned from someone like Ben, and I´m very thankful for the opportunity he has given me to join this amazing company. Throughout all these years of working together, Ben was the mentor who coached me and challenged me to become a better version of myself. Particularly during my former years as the CTO, Ben gave me all the trust and confidence to completely steer the direction of this company from a technological standpoint, while advising me on how to steer also from a business perspective. So after his decision to retire, I received the trust from him and the shareholders to step in as the new CEO, and thus to provide business growth, new energy and opportunities to move in new directions.” 

How do you feel your knowledge and experience will further the success of the DENSsolutions as the new CEO?

“I feel that I’m at a point in my career where I have the right combination of experience, ambition and energy in order to embark upon a nice professional challenge like this. But in particular, I believe that I have a strong knowledge base about the business and its technology, its customers and the external factors that are likely to impact our company. This should allow us to achieve a better match between our technical vision and our business ambition, and it will help me to identify faster the things that might need to change, so that decisions can be executed in a structured and properly planned manner. At the end of the day, I intend to bring innovation to our business model, our strategy and our people management style. By doing this, I want to highlight the importance of putting ‘dynamics ahead of mechanics’.” 

What are some changes you would like to implement as DENSsolutions’ newly-appointed CEO?

“First of all I want to implement new internal procedures to increase and strengthen the alignment among different departments. During this process, I want to ensure that I match our talent to value, which goes beyond employee engagement, and combine speed with stability. Before the end of this year, I want to get the whole team aligned on our upcoming roadmap, but also on the vision that I have for the medium and long term. This will help us become more efficient in how we operate. Overall I want to promote a forward-looking agenda and empower our employees to exploit their talents to the fullest.”

What vision do you have for DENSsolutions in the near future?

“One of the things that I´ve always highlighted about DENSsolutions, is the enormous talent of our people and the strength of our team. When you have these assets, and you combine them with a strong vision, great things can happen. And that’s precisely the foundation that I’m laying on for our near, medium and long-term future. For the near future, I want to ensure that we can finalize and launch some important and new developments, which will strengthen our value proposition and our presence in the market. But since technological innovation (and thus the RnD department) is not the only crucial aspect of our business, I also intend to set in motion new ideas for marketing, sales and operations. The roadmap is already in motion, and we are fully committed to delivering increasing value to our customers.”

Discover Hugo’s publications:

DENSsolutions Climate system takes home the microscopy today 2021 innovation award

DENSsolutions’ Climate system takes home the Microscopy Today 2021 Innovation Award

DENSsolutions becomes a consecutive two-time winner of the Microscopy Today Innovation Awards. This year, our Climate system is recognized as one of the 10 most game-changing microscopy innovations of 2021.

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

DENSsolutions’ Climate system takes home the Microscopy Today 2021 Innovation Award

DENSsolutions’ Climate system takes home the Microscopy Today 2021 Innovation Award

DENSsolutions becomes a consecutive two-time winner of the Microscopy Today Innovation Awards. This year, our Climate system is recognized as one of the 10 most game-changing microscopy innovations of 2021.

Just last year, our Stream system was awarded the Microscopy Today Innovation Award for its unique contribution to the field of liquid phase electron microscopy. We are honored to be taking home the same award for a second year in a row but this time for the remarkable innovation that is our Climate system. Climate is recognized as one of the 10 most game-changing microscopy innovations in 2021 by Microscopy Society of America‘s esteemed magazine, Microscopy Today. We interviewed our Chief Technology Officer Dr. Hugo Pérez-Garza, who led the development of the Climate system, to learn all about the unique benefits that made it earn such an esteemed award, as well as the development process and Climate’s current and envisioned applications. The transcript of the interview is provided below.

What was your reaction when you first heard the news?

It was pretty exciting. As you can imagine, the entire team was very happy when we first heard the news. At the end of the day, I think that this is just another consequence of the amazing teamwork that prevails in this company. And of course, to be accredited by the MSA is a big honor, especially as this is a highly esteemed award within the community. So it really means a lot to us. We really feel confident that our technology, and particularly our Climate system, will help scientists explore all sorts of new research possibilities.

What unique aspects of the system do you think made it earn such an esteemed award?

Over the last months, we have been exerting a lot of effort into making sure that we can improve the Climate system from various different angles. So that means that we have been doing a lot of work to ensure that we can optimize the different components that make up this plug-and-play system. Specifically, we have been trying to boost our MEMS capabilities (the Nano-Reactor). Moreover, we have been trying to continuously improve our hardware components, including the Gas Supply System, the Vaporizer, the Mass Spectrometer, etc. And of course, making sure that we can have new solutions as well for the software platform. Now when you put all these together, what we ended up realizing was that this new optimized Climate system brings all sort of real unique aspects to one’s research.

1) Live gas mixing

Firstly, Climate offers the possibility of performing live gas mixing (i.e. making sure that you can achieve any desired gas composition instantaneously). It ensures that users won’t have to wait for their gas mixtures to be prepared. We see this big added value in our customers’ experiments, for example in redox reactions, where the intrinsic nature of the experiment demands the possibility to quickly go from an oxidizing environment to a reducing environment. Often times people have to do this back-and-forth and in a fast and repetitive way. 

2) Start a new experiment (from a dry to wet environment or vice versa) within minutes

Furthermore, for these experiments a lot of researchers would be interested in humidifying the gas composition. This is precisely where the Vaporizer comes in. Now what happens here is that when you are humidifying the gas, often people are afraid of the contamination that the water molecules would represent for the gas lines. And that is why systems have to baked or have to undergo lengthy pumping times. But that wouldn’t be the case with the Vaporizer, as we have designed it in such a way that the introduction of the water vapor to the gas mixture is the last thing before entering the holder. So that ensures that your Gas Supply System will remain clean, and that you don’t have to perform these baking procedures or keep it pumping over night. This ultimately means you can go from a dry environment to a wet environment, or vice versa, in just a few minutes. So it opens up a lot of possibilities because it gives users this flexibility. 

3) Safely work with explosive mixtures and independently control gas parameters

The fact that we’re dealing with extremely low volumes of gas also means that we can safely handle explosive mixtures even if you plan to do this under extreme conditions such as high temperatures (above 1000°C) in combination with high pressures (i.e. 2 bars) and high relative humidity (i.e. 100%). Not only can you safely handle these explosive mixtures, but you can also control the relative humidity independently from other parameters such as temperature, pressure, gas composition and flow rate. So having this independent control also brings a lot of flexibility to users. 

4) Perform real nano-calorimetry and calibrate for time delay

The Nano-Reactor is also something very unique as we have been heavily optimizing the design such that, for example, the microheater allows for real nano-calorimetry. And this is really unique because it means that you can start quantifying and measuring the tiniest changes in temperature dissipation to understand if you’re observing an exothermic or endothermic reaction. And this is also really beneficial because you can calibrate for time delay, which is an issue that systems usually suffer from due to the unavoidable delay from the Gas Supply System to the MEMS device and to the Mass Spectrometer. Now, we can calibrate for that. 

5)  Prevent bypasses and achieve a desirable SNR

Moreover, the unique design of the Nano-Reactor itself, for which we have a patent, ensures that we can have an on-chip inlet and outlet. In other words, we can ensure that the gas will flow from the inlet to the outlet via the region of interest in a uni-directional way. And that means we can prevent bypasses and therefore improve the signal-to-noise ratio and the sensitivity of the Gas Analyzer. So the combination of these offerings (for example that our MEMS device can go to these high pressures like 2 bar, or allow you to perform EDS experiments well above 900 degrees at high pressures) ends up bringing a very unique value proposition for the user. 

What unique aspects of the system do you think made it earn such an esteemed award?

Over the last months, we have been exerting a lot of effort into making sure that we can improve the Climate system from various different angles. So that means that we have been doing a lot of work to ensure that we can optimize the different components that make up this plug-and-play system. Specifically, we have been trying to boost our MEMS capabilities (the Nano-Reactor). Moreover, we have been trying to continuously improve our hardware components, including the Gas Supply System, the Vaporizer, the Mass Spectrometer, etc. And of course, making sure that we can have new solutions as well for the software platform. Now when you put all these together, what we ended up realizing was that this new optimized Climate system brings all sort of real unique aspects to one’s research.

1) Live gas mixing

Firstly, Climate offers the possibility of performing live gas mixing (i.e. making sure that you can achieve any desired gas composition instantaneously). It ensures that users won’t have to wait for their gas mixtures to be prepared. We see this big added value in our customers’ experiments, for example in redox reactions, where the intrinsic nature of the experiment demands the possibility to quickly go from an oxidizing environment to a reducing environment. Often times people have to do this back-and-forth and in a fast and repetitive way. 

2) Start a new experiment (from a dry to wet environment or vice versa) within minutes

Furthermore, for these experiments a lot of researchers would be interested in humidifying the gas composition. This is precisely where the Vaporizer comes in. Now what happens here is that when you are humidifying the gas, often people are afraid of the contamination that the water molecules would represent for the gas lines. And that is why systems have to baked or have to undergo lengthy pumping times. But that wouldn’t be the case with the Vaporizer, as we have designed it in such a way that the introduction of the water vapor to the gas mixture is the last thing before entering the holder. So that ensures that your Gas Supply System will remain clean, and that you don’t have to perform these baking procedures or keep it pumping over night. This ultimately means you can go from a dry environment to a wet environment, or vice versa, in just a few minutes. So it opens up a lot of possibilities because it gives users this flexibility. 

3) Safely work with explosive mixtures and independently control gas parameters

The fact that we’re dealing with extremely low volumes of gas also means that we can safely handle explosive mixtures even if you plan to do this under extreme conditions such as high temperatures (above 1000°C) in combination with high pressures (i.e. 2 bars) and high relative humidity (i.e. 100%). Not only can you safely handle these explosive mixtures, but you can also control the relative humidity independently from other parameters such as temperature, pressure, gas composition and flow rate. So having this independent control also brings a lot of flexibility to users. 

4) Perform real nano-calorimetry and calibrate for time delay

The Nano-Reactor is also something very unique as we have been heavily optimizing the design such that, for example, the microheater allows for real nano-calorimetry. And this is really unique because it means that you can start quantifying and measuring the tiniest changes in temperature dissipation to understand if you’re observing an exothermic or endothermic reaction. And this is also really beneficial because you can calibrate for time delay, which is an issue that systems usually suffer from due to the unavoidable delay from the Gas Supply System to the MEMS device and to the Mass Spectrometer. Now, we can calibrate for that. 

5)  Prevent bypasses and achieve a desirable SNR

Moreover, the unique design of the Nano-Reactor itself, for which we have a patent, ensures that we can have an on-chip inlet and outlet. In other words, we can ensure that the gas will flow from the inlet to the outlet via the region of interest in a uni-directional way. And that means we can prevent bypasses and therefore improve the signal-to-noise ratio and the sensitivity of the Gas Analyzer. So the combination of these offerings (for example that our MEMS device can go to these high pressures like 2 bar, or allow you to perform EDS experiments well above 900 degrees at high pressures) ends up bringing a very unique value proposition for the user. 

What inspired you and the entire team to develop Climate in the first place?

Certainly understanding the importance and the impact that environmental studies can have on our global society was a big source of inspiration for the entire team. Having said that, understanding the solid-gas interactions at the nanoscale is what sets the foundation such that scientists can really start understanding how to optimize and synthesize future catalytic nanoparticles, which will end up playing a crucial role in applications such as carbon capture, energy storage and conversion as well as food production. So it is really this profound information that we can get from in situ TEM that gives this understanding. Because when you can start correlating particle size with composition, crystal orientation, or with the atomic or the electronic structure, it really gives a deep level of understanding for all these kinds of experiments. 

Can you walk us through the development process of Climate?

It has been 5 or 6 years since we launched our first product line for in situ gas analysis. Ever since, what we have been doing is trying to make sure that we can stay as close as we can to our customers as well as prospects. Now the intention of doing that is when you start gathering the feedback and the vision that both groups have, you start understanding the pain points a little bit more. You start becoming more empathic to their experimental needs. And that helps us identify the product profile that we should have in place. And when you are aware of this product profile, then automatically you know what technologies must be developed, which is part of your roadmap. And subsequently when you have that in place, then you also know what people and processes must be involved. So, it’s a matter of doing that so that when we gather these market requirements, we can follow a defined product creation process that will allow us to develop a technology that will match these market requirements. 

What future applications do you envision for Climate?

Certainly everything related to green technologies. As I mentioned earlier, that is a big goal and motivation that we all have at this company. So these kinds of experiments and topics I was referring to like carbon capture, energy conversion and storage, and all sort of environmental protection kind of studies, that’s really where everything will head towards. 

Thank you for reading. To learn more about our Climate system please follow the links below.

Download the Climate brochure: 

See a customer publication:

Receive a quotation:

Receive a demo:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.