Register for News


X-Rays Safety

Working with high energy electrons (up to 300 kV in current commercial systems) means a large amount of X-Rays are generated inside the microscope: manufacturers are well aware of the potential risks and they take the utmost care to make sure you can operate the electron microscope without being harmed by lethal radiation.

What about DENSsolutions’ holders then? We would like to share our tests results to show we take exactly the same precautions as the original manufacturers.

In this case we performed the tests with one of the TEM providers, with OEM operators and approved measuring devices. The standard protocol was used (beam current equal to >75 nA)

Maximum allowed radiation level: 1000 nS/h

Wildfire DT/Lightning: 235 nS/h                             Climate/Stream: 223 nS/h

For any further questions please do not hesitate to contact your DENSsolutions Sales Representative


First Stream installation

Stream, our new in situ liquid solution, was officially launched at IMC. After only a month, we are happy to announce its first installation.

Researchers at EMAT, the well known EM facility located in Antwerp (Belgium), have selected Stream LB (liquid&biasing) to perform Electron Diffraction Tomography on advanced energy materials. A big role in their decision was played by the advanced and unique control of the experiments in liquid enabled by Stream. Yesterday it was installed and formally accepted: we wish a lot of success to EMAT with their brand new system!



The TOP 100 innovative Dutch SMEs

The Netherlands are the place to be when it comes to innovation: the Dutch Chamber of Commerce selects every year the 100 most innovative SMEs and, yesterday, it was announced DENSsolutions came in 6th position. It is an achievement that makes us very proud and further motivates us to increase the impact of in situ microscopy on your lives.

A big contribution to the result comes from the Climate in situ EM gas&heating solution and its impact on how scientists across the world are trying to solve environmental issues.

Why is the Climate so impactful then?

  • true dynamic mixing: change at will gas composition, in seconds and with any partial pressure.
  • explore the kinetics of your reaction with gas analysis, at any flow rate
  • analyze the thermodynamics of the processes thanks to a Nano-reactor designed for calorimetry,

Read more about the Climate HERE.

Reconstruction of Supported Metal Nanoparticles in Reaction Conditions

Metal nanoparticles (NPs) dispersed on a high surface-area support are normally used as heterogeneous catalysts. The recent introduction of Gas Cell systems has enabled experimental demonstration of the way structure reconstruction of the NPs occurs in real catalysis. However, the role played by supports in these processes is still unclear. Supports can be very important in real catalysis because of the new active sites at the perimeter interface between nanoparticles and supports.

In this contribution, the DENSsolutions Climate Gas&Heating solution, owing to its unsurpassed experimental flexibility and stability under any condition, has been used to exploit the full power of in situ aberration corrected electron microscopy. Coupled with multiscale model, the experiment clearly shows that the interaction between the support and the gas environment greatly changes the contact surface area between the metal and support, which further leads to the critical change in the perimeter interface.
The dynamic changes of the interface in reactive environments can thus be predicted and be included in the rational design of next-gen supported metal nanocatalysts. In particular, the multiscale model shows quantitative agreement with experimental observations: this enables the understanding of atomic scale structures and, therefore, provides insights beyond the experimental limits.

Shape Stability Of Octahedral PtNi Nanocatalysts For Electrochemical Oxygen Reduction

This time we showcase a very interesting paper that highlights once more the need for extremely stable imaging conditions when performing in situ heating. In this contribution, the authors have imaged octahedral faceted nanoparticles at different temperatures. These particles are highly attractive fuel cell catalysts as a result of their activity for the oxygen reduction reaction (ORR). However, their surface compositional and morphological stability currently limits their long-term performance in real membrane electrode assemblies (MEAs). Specifically, they authors have performed in situ heating of compositionally segregated PtNi1.5 octahedral nanoparticles inside a transmission electron microscope, in order to study their compositional and morphological changes.

Wildfire Nano-chips Ultramicroscopy publication

“The authors clearly gave a lot of thought to the issues that could be of interest for a potential user during an in situ TEM experiment before starting the redesign of their system” and “I think it is very good that the company is actively engaging with the scientific community by sharing their views and information on the design of their products by submitting a paper to this journal.”

With these words from the reviewers, we are happy to announce that our own contribution to the scientific community, featuring all you need to know about our advanced heating chips, has been published on Ultramicroscopy.

You can download it for free until the 13th of July.