Converting CO2 into a valuable energy carrier using a model In2O3 catalyst

Converting CO2 into a valuable energy carrier using a model In2O3 catalyst

New discoveries made possible by In Situ TEM gas and heating. The direct hydrogenation of CO2 to methanol shows promise to be an important technique to reduce the amount of greenhouse gases in the atmosphere and thereby mitigate the negative effects of climate change while producing an important energy carrier. In his contribution to this article, Dr. Xing Huang has used In Situ TEM techniques to assess the limits of In2O3 catalytic performance in CO2 hydrogenation.

UConn Opening a New Center for In Situ & Operando TEM in Collaboration With DENSsolutions

UConn Opening a New Center for In Situ & Operando TEM in Collaboration With DENSsolutions

A new center commemorating this exciting collaboration will be opened. The UConn DENSsolutions Center for IN-siTu/Operando Electron Microscopy (InToEM) will be the home of scientists and engineers with complementary expertise working at the frontier of understanding materials dynamics. The InToEM center is situated in UConn Tech Park, the University of Connecticut’s premier center for cutting-edge research, industry collaboration, and innovation.