Introducing Lightning Arctic: Our latest In Situ TEM Cooling, Biasing & Heating solution

Introducing Lightning Arctic: Our latest In Situ TEM Cooling, Biasing & Heating solution

An interview with DENSsolutions Senior Product Manager Dr. Gin Pivak about our latest addition to the Lightning product family: Lightning Arctic.

DENSsolutions introduces its latest product: Lightning Arctic – an innovative in situ solution that can perform cooling, biasing and heating all in one system. In this article, we interview our Senior Product Manager Dr. Gin Pivak to learn all about Lightning Arctic, including its unique capabilities and wide application space.

1) What are the main application fields that will benefit from Lightning Arctic?

“There are numerous applications where Lightning Arctic can play an important role. The ability to cool a sample and apply electrical stimuli enables researchers to study low-temperature physics, reaching temperatures as low as 100 Kelvin. It can be utilized to investigate magnetic materials and nanostructures, superconductors, topological insulators, ferroelectrics and more. Additionally, the application of Lightning Arctic can be expanded to include beam-sensitive materials such as Li-ion batteries, organic superconductors and perovskite-based solar cells, where the cooling capability can prolong the material’s lifespan under the electron beam. Furthermore, the ability to perform electro and/or thermal experiments at high temperatures allows the Lightning Arctic system to be used in the fields of nanomaterials sintering and growth, metals and alloys, low-dimensional materials, resistive switching, phase-change materials, solid oxide fuel cells, piezoelectrics, solid-state batteries and so on.”

2) Has the system already been installed?

“Yes, the system has been installed at the Faculty of Engineering, Department of Materials at Imperial College London (ICL) in the UK. The main user of the Lightning Arctic system at ICL is Dr. Shelly Conroy, who is exploiting various ferroelectric and quantum materials at low temperatures and at atomic resolution.”

3) What are the main benefits of Lightning Arctic for users?

“Lightning Arctic brings forth numerous advantages for your in situ experiments:

1) Perform in situ cooling and heating experiments: A cooling rod inside the Lightning Arctic holder can transfer the ‘cold’ towards the tip of the holder where the MEMS-based Nano-Chip holding the sample is located. Once this cooling rod is connected to a detachable metallic cooling braid which is immersed in an external dewar filled with liquid nitrogen, the sample can be cooled inside the TEM down to liquid nitrogen temperatures. Aside from cooling, the Lightning Arctic holder also enables in situ heating experiments, where the temperature can reach 800 °C and even 1300 °C depending on the chip used.

2) Experience atomic imaging stability: The Lightning Arctic holder was uniquely designed to host a number of additional temperature controllers that work to stabilize the sample drift during cooling. One controller ensures the temperature equilibrium with the TEM while the other stabilizes the cold influx towards the sample. The usage of the external dewar that helps to minimize the liquid nitrogen bubbling ensures that atomic imaging with low sample drift can be achieved.

3) Continuous temperature control: Our state-of-the-art Heating and Biasing Nano-Chips enable the local manipulation of the temperature of the sample while not disturbing the cooling process of the holder. This means that you can achieve the fast setting of any user-defined temperature and the minimization of the image and focus shift when changing the temperature setpoint, all while ensuring atomic-scale imaging quality.

4) Achieve your required sample orientation: The double tilt Lightning Arctic holder allows tilting the sample in both alpha and beta directions of 10 – 25 degrees to find the required zone axis of the sample.

5) Perform in situ biasing experiments while cooling/heating: The Heating and Biasing Nano-Chips compatible with the Lightning Arctic holder contain biasing electrodes that can be used to apply and measure electrical signals either during cooling or during heating. Of course, the preparation of FIB lamellas on the Nano-Chips for electrical experiments is very crucial. There are already proven methods and tools developed for the Lightning system (like the DENSsolutions FIB stub) that can be used to prepare top-quality, short-circuit-free FIB lamellas on the Heating and Biasing chips for the Lightning Arctic system.

6) Wide compatibility of the sample carriers: Lightning Arctic has a similar Nano-Chip compatibility to the Lighting system, and works with Wildfire heating Nano-Chips and Lightning heating and biasing Nano-Chips. Moreover, the Lightning Arctic holder is also compatible with 3mm and lift-out TEM grids that can be used to study beam-sensitive materials at cryo-conditions without the need of using the Nano-Chips. This greatly expands the range of samples that the new in situ solution can work with.”

 

Read more about Lightning Arctic:

 

Download the Lightning Arctic brochure:

Subscribe to our newsletter to stay up-to-date with the latest in situ microscopy news.

Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field

Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field

Underlying nanoparticle behaviour revealed by In Situ TEM heating

Original article by Jorge Romero, Helena Prima-Garcia, Maria Varela, Sara G. Miralles, Víctor Oestreicher,
Gonzalo Abellán and Eugenio Coronado.

The development of supercapacitors holds great promise for future energy storage devices with a high cyclability and durability which can be used in our homes, cars and mobile phones to support the transition to sustainable energy. Even though a lot of effort has been devoted to improving the energy and power densities by optimizing the internal configuration of the capacitor, there is still room for further improvement. Now, researchers have found a way to dramatically improve the capacitance of an FeNi3–graphene hybrid capacitor with about 1100% (from 155 to 1850 F g−1), showing high stability with capacitance retention greater than 90% after 10 000 cycles. They achieved this impressive enhancement by cycling the electrode material in the presence of an applied magnetic field of 4000 G.

Fig. 1. Magnetic graphene–FeNi3 nanocomposite particle under applied magnetic field, pristine sample.

Fig. 2. Magnetic graphene–FeNi3 nanocomposite particle under applied magnetic field, after a 30 min annealing at 400 °C and fast quench back to RT. Arrow pointing out the nanometallic clusters.

In Situ TEM heating

To explain the behaviour of the nanoparticles under the external magnetic-field, Prof. Maria Varela from Universidad Complutense de Madrid, Spain and her colleagues performed in situ heating experiments using a DENSsolutions Lightning D9+ heating and biasing double tilt system. The magnetic field of the microscope objective lens combined with the heating stimuli, provided by the DENSsolutions’ system, were able to observe a significant magnetic field and temperature induced metal segregation of Fe/Ni surfaces forming nanometallic clusters of Ni (<5 nm).

Using these results, the authors were able to explain the dramatic increase of the specific capacitance of the device during the cycling. Furthermore, they opened the door to a systematic improvement of the capacitance values of hybrid supercapacitors, moving the research in this area towards the development of magnetically addressable energy-storage devices.

Learn more about our Lightning system:

Discover more publications made possible by our Lightning system:

Read the original article:

Do you want to receive great articles like this in your mailbox? Subscribe to our newsletter.

214