Introducing our new DENSsolutions brand identity

Introducing our new DENSsolutions brand identity

Logo transition illustration
In a time where communication is evolving primarily online, the ability to adapt has never been more crucial. We recognize the importance of growth and modernization, especially within this high-tech industry, and have updated our brand identity to reflect just that. Part of this process entailed analyzing our core values as a company and how we can effectively address the needs of this dynamic world of research. This analysis resulted in the recognition of three core values that encapsulate the heart of our company: care, innovation and delivery.

We care

At the very core of all of our innovations, our technology and our solutions is that we care about your research. We want you to have the best possible equipment, be able to discover new phenomena and get unique yet reliable results that allow you to answer your scientific questions and publish in high impact journals.
This care goes beyond design and manufacture, we provide support whenever and wherever it is needed. We also aim to be the global hub for the In Situ research community, connecting you with peers all across the world.

HugoHugo with Angus Kirkland

CTO Hugo Pérez with University of Oxford Professor Angus Kirkland 

We innovate

With researchers constantly pushing the boundaries of knowledge, we make sure that our systems push the boundaries of innovation. This is at the heart of our second core value: we innovate. This way, you can rest assured that you are operating the best stimuli supply and measurement systems on the market, giving you the necessary tools to make groundbreaking discoveries. Whatever the application, from materials science to catalysis, you can ultimately create a sample environment almost identical to the real world.

DENS employee looking at a holder

Previous Mechatronics Engineer Diederik Morsink observing a holder in our offices

We deliver

We acknowledge how precious your time is and how crucial our cutting-edge technology is for your research. Through our worldwide distributor network, we strive to make sure that you receive your equipment in time. In efforts to adapt to the travel limitations of today, we have comprehensive remote installations and trainings for all of our solutions so that you can operate our systems with confidence, no matter where you are.

Magda with Climate cradle

Warehouse Supervisor Magda Wierzba handling Climate system delivery

We are delighted to be able to share our updated brand identity and the core values driving our company forward. Although our solutions are used to observe nanoscale phenomena, there is a huge amount of commitment, drive, and logistics involved behind the scenes. With our values of care, innovation and delivery at the forefront, DENSsolutions will continue to develop advanced in situ electron microscopy systems that promise reliability and accuracy every time.
Markus article feature image

New measuring technique proves exceptional temperature accuracy of our Wildfire Nanochip

In collaboration with Utrecht University, we develop a novel technique to measure temperature at the nanoscale, showing the remarkable temperature accuracy and homogeneity of our Wildfire Nanochip

Do you want to receive great articles like this in your mailbox? Subscribe to our newsletter.

New measuring technique proves exceptional temperature accuracy of our Wildfire Nanochip

New measuring technique proves exceptional temperature accuracy of our Wildfire Nanochip

In collaboration with Utrecht University, we develop a novel technique to measure temperature at the nanoscale, showing the remarkable temperature accuracy and homogeneity of our Wildfire Nanochip

Original article by Thomas P. van Swieten, Tijn van Omme, Dave J. van den Heuvel, Sander J.W. Vonk, Ronald G. Spruit, Florian Meirer, Hugo Pérez Garza , Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw and Robin G. Geitenbeek
Thomas article feature image

The temperature-sensitive luminescence of nanoparticles enables their application as remote thermometers. In fact, the size of these nanothermometers makes them ideal to map temperatures with a high spatial resolution. Yet, conducting high spatial resolution mapping of temperatures that exceed 100°C poses some challenges.

In collaboration with Thomas van Swieten and his fellow colleagues at Utrecht University, we were able to jointly develop a new technique to measure temperature at the nanoscale. In fact, we tested this novel technique on our Wildfire Nanochip and were able to further confirm the Nanochip’s unparalleled temperature accuracy and homogeneity. These experiments also proved how well our models work to predict the temperature distribution across the microheater. Importantly, this particular technique will improve the accuracy of nanothermometry as a whole, not only in micro- and nano-electronics but also in other fields with photonically inhomogeneous substrates.  

The technique: Luminescence nanothermometry

Thermometry on the microscopic scale is an essential characterization tool for the development of nano- and microelectronic devices. However, conventional thermometers like thermocouples are often unable to reliably measure the temperature on this length scale due to their size. This is precisely where remote temperature sensing via optical thermometry techniques comes into play. Thermometry based on luminescence is particularly interesting since it is easily implemented, requiring only the deposition of a luminescent material in or on a sample of interest and the detection of its luminescence. For this reason, luminescence nanothermometry is currently developing into the method of choice for temperature measurements in microscopy.

Homogeneous heat distribution

Our Wildfire Nanochip was specifically designed to enable users a homogeneous heat distribution across the microheater where a sample is positioned. It is particularly due to the unique geometry of the metal spiral, where the windows are placed right at the center, that users are able to enjoy such a remarkable temperature homogeneity. In fact, our Wildfire Nanochip has a temperature uniformity of 98% across the window area and 99.5% across the two central windows. The figure on the right below is a perfect illustration of the chip’s exceptional temperature homogeneity, showing the temperature profile across the membrane and the microheater for a center temperature of 523 K simulated with a finite element model.

The high temperature homogeneity of our Wildfire Nanochips is also owed to the fact that the metal heating spiral is embedded in a silicon nitride membrane. Silicon nitride has many advantages including being chemically inert, mechanically robust and can withstand harsh chemical and temperature environments. 

Tijn article - figure 2 wildfire nanochip homogeneous distribution

On the left: The Wildfire Nanochip, where the metal spiral is represented in orange and the silicon nitride membrane in blue. On the right: Finite element model simulation showing the remarkable temperature homogeneity of the Wildfire Nanochip

Reliable temperature mapping

In this work, the luminescent particles that were used are NaYF₄ nanoparticles doped with Er³⁺ and Yb³⁺. These particles exhibit a strong upconversion when excited with an infrared laser. In other words, they emit photons with a shorter wavelength than the excitation photons. As shown in the figure below, we found that the spectrum of the emitted (green) photons is quite sensitive to temperature.

Tijn article - Figure 1 Intensity vs Wavelength

Green upconversion luminescence of the nanoparticles upon excitation at various temperatures ranging from 303 K (dark red) to 573 K (yellow)

By scanning the laser across a layer of deposited nanoparticles in the confocal microscope, we were able to capture an array of emission spectra. We then converted this emission spectra into a temperature map using the luminescence intensity ratio of the 2 peaks at each pixel. After a number of correction steps, the technique showed a remarkable precision of 1-4 K with a spatial resolution of ∼1 micrometer. It is noteworthy to mention that most other techniques are unable to achieve such a high accuracy like this.

Tijn article - Figure 3 DESKTOP reliable temperature mapping

In a) we scanned the laser across the microheater with the deposited luminescent nanoparticles to generate a map of intensity ratios. b) shows the spectrum at each pixel converted into a temperature to provide a temperature map of the microheater.

Simulation and model accuracy

Using the fully corrected temperature maps, we were able to analyze in depth the temperature homogeneity of the microheater. The figure below shows the horizontal traces through the center of these maps. The simulated temperature profiles (lines) show an excellent match with the experimental traces (dots).This confirms both the reliability of the finite element model as a design tool and the strength of our temperature mapping technique as a characterization tool, achieving a high accuracy and a spatial resolution of ∼1 μm.

Tijn article - temperature mapping in graph

A graph showing the mapping of elevated temperatures. The lines represent the simulated temperature profiles and the experimental traces represent the dots.

We determine the standard deviation of the temperature in the center to quantify the accuracy of this thermometry method and find values of 1 K at 323 K increasing to only 4 K at 513 K. Conclusively, this makes nanothermometry using confocal luminescence spectroscopy a promising method to map temperature profiles not only for microheaters but also in other fields such as biology and catalysis where temperature variations are important but hard to monitor with conventional methods.
Tijn portrait image
“Thanks to the exceptionally good spatial and temperature resolution of this method, we were able to obtain an accurate temperature map of our microheater spiral. This confirmed the excellent temperature homogeneity which was predicted by our finite element models.”
Tijn van Omme
Microsystems Engineer |  DENSsolutions

Original article:

Discover our Wildfire solution:

Discover more publications made possible by Wildfire:

Markus article feature image

The first in situ observation of layered metastable heterostructure formation

Using our Wildfire system, scientists are able to thoroughly investigate the formation of heterostructures from starting materials with vastly different properties

Do you want to receive great articles like this in your mailbox? Subscribe to our newsletter.

227